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Abstract. We propose a formulation of the term structure of interest rates in which the forward curve is
seen as the deformation of a string. We derive the general condition that the partial differential equations
governing the motion of such string must obey in order to account for the condition of absence of arbitrage
opportunities. This condition takes a form similar to a fluctuation-dissipation theorem, albeit on the same
quantity (the forward rate), linking the bias to the covariance of variation fluctuations. We provide the
general structure of the models that obey this constraint in the framework of stochastic partial (possibly
non-linear) differential equations. We derive the general solution for the pricing and hedging of interest rate
derivatives within this framework, albeit for the linear case (we also provide in the appendix a simple and
intuitive derivation of the standard European option problem). We also show how the “string” formulation
simplifies into a standard N-factor model under a Galerkin approximation.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.+j Fluctuation phenomena,
random processes, and Brownian motion – 89.90.+n Other areas of general interest to physicists

1 Introduction

Imagine that Julie wants to invest $1 for two years [1].
She can devise two possible strategies. The first one is to
put the money in a one-year bond at an interest rate r1.
At the end of the year, she must take her money and find
another one-year bond, with interest rate r1

2 which is the
interest rate in one year on a loan maturing in two years.
The final payoff of this strategy is simply (1 + r1)(1 + r1

2).
The problem is that Julie cannot know for sure what will
be the one-period interest rate r1

2 of next year. Thus, she
can only estimate a return by guessing the expectation of
r1
2.

Instead of making two separate investments of one year
each, Julie could invest her money today in a bond that
pays off in two years with interest rate r2. The final payoff
is then (1 + r2)2. This second strategy is riskless as she
knows for sure her return. Now, this strategy can be rein-
terpreted along the line of the first strategy as follows. It
consists in investing for one year at the rate r1 and for the
second year at a forward rate f2. The forward rate is like
the r1

2 rate, with the essential difference that it is guaran-
teed : by buying the two-year bond, Julie can “lock in” an
interest rate f2 for the second year.
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This simple example illustrates that the set of all pos-
sible bonds traded on the market is equivalent to the so-
called forward rate curve. The forward rate f(t, x) is thus
the interest rate that can be contracted at time t for in-
stantaneously riskless borrowing1 or lending at time t+x.
It is thus a function or curve of the time-to-maturity2 x,
where x plays the role of a “length” variable, that deforms
with time t. Its knowledge is completely equivalent to the
set of bond prices P (t, x) at time t that expire at time t+x
(see Eq. (4) below). The shape of the forward rate curve
f(t, x) incessantly fluctuates as a function of time t. These
fluctuations are due to a combination of factors, including
future expectation of the short-term interest rates, liq-
uidity preferences, market segmentation and trading. It is
obvious that the forward rate f(t, x+ δx) for δx small can
not be very different from f(t, x). It is thus tempting to
see f(t, x) as a “string” characterized by a kind of tension
which prevents too large local deformations that would
not be financially acceptable. This superficial analogy is

1 “Instantaneous riskless” describes the fact that the forward
rate is the rate that applies for a small time increment δt as
seen from equation (4) below and is fixed during this time, thus
being locally riskless.

2 The maturity of a financial product is simply its lifetime.
In other words, it is the time interval between the present and
the time of extinction of the rights attached to the financial
product.
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in the follow up of the repetitious intersections between fi-
nance and physics, starting with Bachelier [2] who solved
the diffusion equation of Brownian motion as a model of
stock market price fluctuations five years before Einstein,
continuing with the discovery of the relevance of Lévy laws
for cotton price fluctuations by Mandelbrot [3] that can be
compared with the present interest of such power laws for
the description of physical and natural phenomena [4]. We
could go on and cite many other examples. We investigate
how to formalize mathematically this analogy between the
forward rate curve and a string. In this goal, we formu-
late the term structure of interest rates as the solution of
a stochastic partial differential equation (SPDE) [5], fol-
lowing the physical analogy of a continuous curve (string)
whose shape moves stochastically through time.

The equation of motion of macroscopic physical strings
is derived from conservation laws. The fundamental equa-
tions of motion of microscopic strings formulated to de-
scribe the fundamental particles [6] derive from global
symmetry principles and dualities between long-range and
short-range descriptions. Are there similar principles that
can guide the determination of the equations of motion of
the more down-to-earth financial forward rate “strings”?

The situation is a priori much more difficult than in
physics as illustrated by the following picturial analogy
quoted from the journalist N. Dunbar at Financial Prod-
ucts magazine. Suppose that in the middle ages, before
Copernicus and Galileo, the Earth really was stationary
at the centre of the universe, and only began moving later
on. Imagine that during the nineteenth century, when ev-
eryone believed classical physics to be true, that it re-
ally was true, and quantum phenomena were non-existent.
These are not philosophical musings, but an attempt to
portray how physics might look if it actually behaved like
the financial markets. Indeed, the financial world is such
that any insight is almost immediately used to trade for
a profit. As the insight spreads among traders, the “uni-
verse” changes accordingly. As Soros has pointed out, mar-
ket players are “actors observing their own deeds”. As Der-
man, head of quantitative strategies at Goldman Sachs,
puts it, in physics you are playing against God, who does
not change his mind very often. In finance, you are play-
ing against God’s creatures, whose feelings are ephemeral,
at best unstable, and the news on which they are based
keep streaming in. Value clearly derives from human be-
ings, while mass, charge and electromagnetism apparently
do not. This has led to suggestions that a fruitful frame-
work to study finance and economy is to use evolutionary
models inspired from biology and genetics.

This does not however guide us much for the determi-
nation of “fundamental” equations, if any. Here, we pro-
pose to use the condition of absence of arbitrage oppor-
tunity3 and show that this leads to strong constraints on

3 Arbitrage, also known as the Law of One Price, states that
two assets with identical attributes should sell for the same
price and so should the same asset trading in two different
markets. If the prices differ, a profitable opportunity arises to
sell the asset where it is overpriced and to buy it where it is
underpriced.

the structure of the governing equations. The basic idea is
that, if there are arbitrage opportunities (free lunches),
they cannot live long or must be quite subtle, other-
wise traders would act on them and arbitrage them away.
The no-arbitrage condition is an idealization of a self-
consistent dynamical state of the market resulting from
the incessant actions of the traders (arbitragers). It is not
the out-of-fashion equilibrium approximation sometimes
described but rather embodies a very subtle cooperative
organization of the market.

We consider this condition as the fundamental back-
bone for the theory. The idea to impose this requirement
is not new and is in fact the prerequisite of most mod-
els developed in the academic finance community. How-
ever, applying it in the present context is new. Modigliani
and Miller [7,8] have indeed emphasized the critical role
played by arbitrage in determining the value of secu-
rities. It is sometimes suggested that transaction costs
and other market imperfections make irrelevant the no-
arbitrage condition [9]. Let us address briefly this question
before presenting our results.

Transaction costs in option replication and other hedg-
ing activities4 have been extensively investigated since
they (or other market “imperfections”) clearly disturb the
risk-neutral argument and set option theory back a few
decades. Transaction costs induce, for obvious reasons,
dynamic incompleteness, thus preventing valuation as we
know it since Black and Scholes [10]. However, the most ef-
ficient dynamic hedgers (market makers) incur very small
transaction costs when owning options5 (see the appendix
for a definition of options). These specialized market mak-
ers compete with each other to provide liquidity in option
instruments, and maintain inventories in them. They ra-
tionally limit their dynamic replication to their residual
exposure, not their global exposure. In addition, the fact
that they do not hold options until maturity greatly re-
duces their costs of dynamic hedging. They have an incen-
tive in the acceleration of financial intermediation. Fur-
thermore, as options are rarely replicated until maturity,
the expected transaction costs of the short options depend
mostly on the dynamics of the order flow in the option
markets -not on the direct costs of transacting. The con-
clusion is that transaction costs are a fraction of what has
been assumed to be in the literature [11]. For the efficient
operators (and those operators only), markets are more
dynamically complete than anticipated. This is not true
for a second category of traders, those who merely pur-
chase or sell financial instruments that are subjected to
dynamic hedging. They, accordingly, neither are equipped
for dynamic hedging, nor have the need for it, thanks to
the existence of specialized and more efficient market mak-
ers. The examination of their transaction costs in the event
of their decision to dynamically replicate their options is
of no true theoretical contribution.

A second important point is that the existence of
transaction costs should not be invoked as an excuse for

4 Finance is all about risks but some risks can be hedged,
i.e. offset, by trading in different financial instruments.

5 In a nutshell, an option is an insurance for buying or selling.
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disregarding the no-arbitrage condition but rather should
be constructively invoked to study its impacts on the mod-
els. We should however caution that a still open and un-
resolved fundamental question is the nature of the “per-
turbation” when going from the perfect no-arbitrage con-
dition to weak-arbitrage in presence of market imperfec-
tions. We implicitely assume in this work that the pertur-
bation is smooth, i.e. the perturbed real dynamics is close
to the perfect case. We cannot however exclude a singular
perturbation.

This work expands our previous work [12] which intro-
duced stochastic strings multiplied by volatility functions
to shock forward rates. This theory models the true dy-
namics and not only the risk-neutral dynamics. The risk
component is taken into account by the introduction of a
pricing kernel. In the present formulation, we restrict the
description to the risk-neutral dynamics by putting the
pricing kernel to zero. Re-introducing the pricing kernel
of risks does not pose any difficulty. Our present approach
directly deals with the SPDE equation for the forward
rates in contrast to the shocks that drive the forward rate
curve that were treated in reference [12]. Our model pro-
vides a further extension of the term structure model of
Heath, Jarrow and Morton [14] and is as parsimonious
and tractable as the traditional HJM model, but is ca-
pable of generating a much richer class of dynamics and
shapes of the forward rate curve. Its main motivation is to
address the interplay between external factors represented
by stochastic components (noise) and possible non-linear
dynamics.

2 Definitions

We postulate the existence of a stochastic discount factor
(SDF) that prices all assets in this economy and denote it
by M . This process is also termed the pricing kernel, the
pricing operator, or the state price density. We use these
terms interchangeably. Reference [15] is an excellent refer-
ence for the theory behind the SDF. It is well known that
assuming that no dynamic arbitrage trading strategies can
be implemented by trading in the financial securities is-
sued in the economy is roughly equivalent to the existence
of a strictly positive SDF. For no arbitrage opportunities
to exist, the product of M with the value process of any
investment strategy must be a martingale6. Under an ad-
equate definition of the space of admissible trading strate-
gies, the productMV is a martingale, where V is the value
process of any admissible self-financing trading strategy
implemented by trading on financial securities. Then,

V (t) = Et

[
V (s)

M(s)

M(t)

]
, (1)

6 Technically, recall that a martingale is a family of random
variables ξ(t) such that the mathematical expectation of the
increment ξ(t2)− ξ(t1) (for arbitrary t1 < t2), conditioned on
the past values ξ(s) (s ≤ t1), is zero. The drift of a martin-
gale is thus zero. This is different from the Markov process,
which is better known in the physical community, defined by
the independence of the next increment on past values.

where s is a future date and Et [x] denotes the mathe-
matical expectation of x taken at time t. In particular,
we require that a bank account and zero-coupon discount
bonds of all maturities satisfy this condition.

A security is referred to as a (floating-rate) bank ac-
count, if it is “locally riskless”7. Thus, the value at time t,
of an initial investment of B(0) units in the bank account
that is continuously reinvested, is given by the following
process

B(t) = B(0) exp

{∫ t

0

r(s)ds

}
, (2)

where r(t) is the instantaneous nominal interest rate.
We further assume that, at any time t, riskless discount

bonds of all maturity dates s trade in this economy and
let P (t, s) denote the time t price of the s maturity bond.
We require that P (s, s) = 1, that P (t, s) > 0 and that
∂P (t, s)/∂s exists.

Instantaneous forward rates at time t for all times-to-
maturity x > 0, f(t, x), are defined by

f(t, x) = −
∂ logP (t, t+ x)

∂x
, (3)

which is the rate that can be contracted at time t for
instantaneously riskless borrowing or lending at time t+x.
We require that the initial forward curve f(0, x), for all x,
be continuous.

Equivalently, from the knowledge of the instantaneous
forward rates for all times-to-maturity between 0 and time
s− t, the price at time t of a bond with maturity s can be
obtained by

P (t, s) = exp

{
−

∫ s−t

0

f(t, x)dx

}
. (4)

Forward rates thus fully represent the information in the
prices of all zero-coupon bonds.

The spot interest rate at time t, r(t), is the instanta-
neous forward rate at time t with time-to-maturity 0,

r(t) = f(t, 0). (5)

For convenience, we model the dynamics of forward
rates. Clearly, we could as well model the dynamics of
bond prices directly, or even the dynamics of the yields
to maturity of the zero-coupon bonds. We use forward
rates with fixed time-to-maturity rather than fixed ma-
turity date. The model of HJM starts from processes for
forward rates with a fixed maturity date. This is different
from what we do. If we use a “hat” to denote the forward
rates modeled by HJM,

f̂(t, s) = f(t, s− t) (6)

or, equivalently,

f(t, x) = f̂(t, t+ x) (7)

7 A security is “locally riskless” if, over an instantaneous
time interval, its value varies deterministically. It may still be
random, but there is no Brownian term in its dynamics.
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for fixed s. Brace and Musiela [16] define forward rates in
the same fashion. Miltersen, Sandmann and Sondermann
[17], and Brace, Gatarek and Musiela [18] use definitions of
forward rates similar to ours, albeit for non-instantaneous
forward rates. Modelling forward rates with fixed time-to-
maturity is more natural for thinking of the dynamics of
the entire forward curve as the shape of a string evolving
in time. In contrast, in HJM, forward rate processes dis-
appear as time reaches their maturities. Note, however,
that we still impose the martingale condition on bonds
with fixed maturity date, since these are the financial in-
struments that are actually traded.

3 Stochastic strings as solutions of SPDE’s

In a nutshell, the contribution of this paper consists in
modelling the dynamical evolution of the forward rate
curve by stochastic partial differential equations (SPDE’s)
[5]. In the context of continuous-time finance, this is
the most natural and general extension that can be per-
formed8.

Financial and economic time series are often described
to a first degree of approximation as random walks, fol-
lowing the precursory work of Bachelier [2] and Samuel-
son [19]. A random walk is the mathematical translation
of the trajectory followed by a particle subjected to ran-
dom velocity variations. The analogous physical system
described by SPDE’s is a stochastic string. The length
along the string is the time-to-maturity and the string
configuration (its transverse deformation) gives the value
of the forward rate f(t, x) at a given time for each time-to-
maturity x. The set of admissible dynamics of the config-
uration of the string as a function of time depends on the
structure of the SPDE. Let us for the time being restrict
our attention to SPDE’s in which the highest derivative
is second order. This second order derivative has a simple
physical interpretation : the string is subjected to a ten-
sion, like a piano chord, that tends to bring it back to zero
transverse deformation. This tension forces the “coupling”
among different times-to-maturity so that the forward rate
curve is at least continuous. In principle, the most gen-
eral formulation would consider SPDE’s with terms of
arbitrary derivative orders9. However, it is easy to show
that the tension term is the dominating restoring force,
when present, for deformations of the string (forward rate
curve) at long “wavelengths”, i.e. for slow variations along

8 Further extensions will include fractional differential equa-
tions and integro-differential equations, including jump pro-
cesses.

9 Higher order derivatives also have an intuitive physical in-
terpretation. For instance, going up to fourth order derivatives
in the SPDE correspond to the dynamics of a beam, which has
bending elastic modulus tending to restore the beam back to
zero deformation, even in absence of tension.

the time-to-maturity axis. Second order SPDE’s are thus
generic in the sense of a systematic expansion10.

In the framework of second order SPDE’s, we consider
hyperbolic, parabolic and elliptic SPDE’s, to characterize
the dynamics of the string along two directions : iner-
tia or mass, and viscosity or subjection to drag forces. A
string that has “inertia” or, equivalently, “mass” per unit
length, along with the tension that keeps it continuous, is
characterized by the class of hyperbolic SPDE’s. For these
SPDE’s, the highest order derivative in time has the same
order as the highest order derivative in distance along the
string (time-to-maturity). As a consequence, hyperbolic
SPDE’s present wave-like solutions, that can propagate
as pulses with a “velocity”. In this class, we find the so-
called “Brownian sheet” which is the direct generalization
of Brownian motion to higher dimensions, that preserves
continuity in time-to-maturity. The Brownian sheet is the
surface spanned by the string configurations as time goes
on. The Brownian sheet is however non-homogeneous in
time-to-maturity, which led us to examine other processes.

If the string has no inertia11, its dynamics are char-
acterized by parabolic SPDE’s. These stochastic processes
lead to smoother diffusion of shocks through time, along
time-to-maturity.

Finally, we mention the third class of SPDE’s of
second-order, namely elliptic partial differential equations.
Elliptic SPDE’s give processes that are differentiable both
in x and t. Therefore, in the strict limit of continuous
trading, these stochastic processes correspond to locally
riskless interest rates.

For the sake of completeness and clarity, we briefly
summarize useful facts about PDE’s (See for instance
Ref. [20] and, in particular, their classification and the
intuitive meaning behind it). We restrict our discussion to
two-dimensional examples. Their general form reads

A(t, x)
∂2f(t, x)

∂t2
+ 2B(t, x)

∂2f(t, x)

∂t∂x

+C(t, x)
∂2f(t, x)

∂x2
=

F (t, x, f(t, x),
∂f(t, x)

∂t
,
∂f(t, x)

∂x
, S), (8)

where f(t, x) is the forward rate curve. S(t, x) is the
“source” term that will be generally taken to be Gaus-
sian white noise η(t, x) characterized by the covariance

Cov [η(t, x), η(t′, x′)] = δ(t− t′) δ(x− x′), (9)

where δ denotes the Dirac distribution. Expression (8) is
the most general second-order SPDE in two variables. For
arbitrary non-linear terms in F , the existence of solutions

10 There are situations where the tension can be made to
vanish (for instance in the presence of a rotational symmetry)
and then the leading term in the SPDE becomes the fourth
order “beam” term.
11 Or if the inertia term is negligible compared to the drag
term proportional to the first time derivative (so-called over-
damped dynamics).
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is not warranted and a case by case study must be per-
formed. For the cases where F is linear, the solution f(t, x)
exists and its uniqueness is warranted once “boundary”
conditions are given, such as, for instance, the initial value
of the function f(0, x) as well as any constraints on the
particular form of equation (8).

Equation (8) is defined by its characteristics, which
are curves in the (t, x) plane that come in two families of
equation :

Adt = (B +
√
B2 −AC)dx, (10)

Adt = (B −
√
B2 −AC)dx. (11)

These characteristics are the geometrical loci of the prop-
agation of the boundary conditions.

Three cases must be considered.
• When B2 > AC, the characteristics are real curves and
the corresponding SPDE’s are called “hyperbolic”. For
such hyperbolic SPDE’s, the natural coordinate system is
formed from the two families of characteristics. Express-
ing (8) in terms of these two natural coordinates λ and µ,
we get the “normal form” of hyperbolic SPDE’s :

∂2f

∂λ∂µ
= P (λ, µ)

∂f

∂λ
+Q(λ, µ)

∂f

∂µ
+R(λ, µ)f + S(λ, µ).

(12)
The special case P = Q = R = 0 with S(λ, µ) = η(λ, µ)
corresponds to the so-called Brownian sheet, well stud-
ied in the mathematical literature as the 2D continuous
generalization of the Brownian motion.
• When B2 = AC, there is only one family of character-
istics, of equation

Adt = Bdx. (13)

Expressing (8) in terms of the natural characteristic co-
ordinate λ and keeping x, we get the “normal form” of
parabolic SPDE’s :

∂2f

∂x2
= K(λ, µ)

∂f

∂λ
+L(λ, µ)

∂f

∂x
+M(λ, µ)f+S(λ, µ). (14)

The diffusion equation, well-known to be associated to the
Black-Scholes option pricing model, is of this type. The
main difference with the hyperbolic equations is that it is
no more invariant with respect to time-reversal t→ −t. In-
tuitively, this is due to the fact that the diffusion equation
is not conservative, the information content (negentropy)
continually decreases as time goes on.
• When B2 < AC, the characteristics are not real curves
and the corresponding SPDE’s are called “elliptic”. The
equations for the characteristics are complex conjugates
of each other and we can get the “normal form” of elliptic
SPDE’s by using the real and imaginary parts of these
complex coordinates z = u± iv :

∂2f

∂u2
+
∂2f

∂v2
= T

∂f

∂u
+ U

∂f

∂v
+ V f + S. (15)

There is a deep connection between the solution of elliptic
SPDE’s and analytic functions of complex variables.

We have shown [12] that hyperbolic and parabolic
SPDE’s provide processes reducing locally to standard

Brownian motion at fixed time-to-maturity, while elliptic
SPDE’s give locally riskless time evolutions. Basically, this
stems from the fact that the “normal forms” of second-
order hyperbolic and parabolic SPDE’s involve a first-
order derivative in time, thus ensuring that the stochastic
processes are locally Brownian in time. In contrast, the
“normal form” of second-order elliptic SPDE’s involve a
second-order derivative with respect to time, which is the
cause for the differentiability of the process with respect
to time. Any higher order SPDE will be Brownian-like in
time if it remains of order one in its time derivatives (and
higher-order in the derivatives with respect to x).

4 No-arbitrage condition : derivation of the
general condition

We now proceed to derive the general condition that the
forward rate equation must obey to be compatible with
the no-arbitrage constraint.

From (4), we get

dt logP (t, s) = f(t, x) dt−

∫ x

0

dy dtf(t, y), (16)

where x ≡ s− t. We need the expression of dP (t,s)
P (t,s) which

is obtained from (16) using Ito’s calculus [13]. In order to
get Ito’s term in the drift, recall that it results from the
fact that, if f is stochastic, then

dtF (f) =
∂F

df
dtf +

1

2

∫
dx

∫
dx′

∂2F

∂f(t, x)∂f(t, x′)

×Cov [dtf(t, x), dtf(t, x′)] , (17)

where Cov [dtf(t, x), dtf(t, x′)] is the covariance of the
time increments of f(t, x).

Using this Ito’s calculus, we obtain

dP (t, s)

P (t, s)
=

[
dt f(t, x)−

∫ x

0

dy Et,dtf (t, y)

+
1

2

∫ x

0

dy

∫ x

0

dy′ Cov [dtf(t, y)dtf(t, y′)]

]
−

∫ x

0

dy [dtf(t, y)−Et,dtf (t, y)]. (18)

We have explicitely taken into account the fact that
dtf(t, x) may have in general a non-zero drift, i.e. its ex-
pectation

Et,dtf (t, x) ≡ Et [dtf(t, x)|f(t, x)] (19)

conditioned on f(t, x) is non-zero.

The no-arbitrage condition for buying and holding
bonds implies that PM is a martingale in time, for any
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bond price P . Technically this amounts to imposing that
the drift of PM be zero :

f(t, x) = f(t, 0) +

∫ x

0

dy
Et,dtf (t, y)

dt

−
1

2

∫ x

0

dy

∫ x

0

dy′ c(t, y, y′) + o(1), (20)

assuming that dtf(t, x) is not correlated with the stochas-
tic process driving the pricing kernel and using the defini-
tions

c(t, y, y′)dt = Cov[dtf(t, y)dtf(t, y′)], (21)

and r(t) = f(t, 0) as given by (5). In (20), the notation
o(1) designs terms of order dt taken to a positive power.

Expression (20) is the fundamental constraint that a
SPDE for f(t, x) must satisfy in order to obey the no-
arbitrage requirement. As in other formulations, this con-
dition relates the drift to the volatility.

It is useful to parameterize, without loss of generality,

Et,dtf (t, x)

dt
=
∂f(t, x)

∂x
+ h(t, x), (22)

where h(t, x) is a priori arbitrary. The usefulness of this
parameterization (22) stems from the fact that it allows
us to get rid of the terms f(t, x) and f(t, 0) in (20). In-

deed, they cancel out with the integral over y of
Et,dtf (t,y)

dt
.

Taking the derivative with respect to x of the no-arbitrage
condition (20), we obtain

h(t, x) = −
1

2

∫ x

0

[c(t, y, x) + c(t, x, y)]. (23)

In sum, we have the following constraint that the SPDE
for f(t, x) must satisfy

Et [dtf(t, x)|f(t, x)] = dt
∂f(t, x)

∂x
−

1

2

∫ x

0

dy

×

(
Cov[dtf(t, y)dtf(t, x)]+Cov[dtf(t, x)dtf(t, y)]

)
,(24)

which, for symmetric covariance, lead to

Et [dtf(t, x)|f(t, x)] = dt
∂f(t, x)

∂x

−

∫ x

0

dy Cov[dtf(t, y)dtf(t, x)]. (25)

This expression (25) is reminiscent of the fluctuation-
dissipation theorem in the Langevin formulation of the
Brownian motion [21], linking the drag coefficient (ana-
log to the l.h.s.) to the integral over time of the corre-
lation function of the fluctuation forces (analog of the
second term12 of the r.h.s.). In the usual fluctuation-
dissipation theorem, the drag coefficient is determined
self-consistently as a function of the amplitude and cor-
relation of the fluctuating force in order to be compatible

12 The first term of the r.h.s. is a drift term that disappear
by a galilean transformation of frame.

with the equilibrium distribution. Similarly, here the no-
arbitrage condition determines self-consistently the con-
ditional drift from the covariance of the fluctuations. In
contrast, notice however that the same quantity f enters
in both sides of (24) and (25). Thus, the no-arbitrage con-
dition imposes a condition on the structure of the partial
differential equations that govern the dynamical evolution
of the forward rates f(t, x).

5 General structure of the SPDE’s
compatible with the no-arbitrage condition

To derive the structure of the SPDE’s compatible with the
no-arbitrage condition (24), we come back to the formu-
lation of [12] and parameterize the time increment of the
forward rate as

dtf(t, x) = α(t, x)dt + σ(t, x)dtZ(t, x), (26)

where Z(t, x) is a infinite dimensional stochastic process
which is continuous in x and t and α(t, x) and σ(t, x) are
a priori arbitrary functions of f(t, x).

Using this formulation (26), we have shown previously
[12] that the condition of no arbitrage leads to the follow-
ing dynamics for the forward rates

dtf(t, x) = dt

(
∂f(t, x)

∂x
+A(t, x)

)
+σ(t, x) dtZ(t, x),

(27)
where

A(t, x) = σ(t, x)

(∫ x

0

dy σ(t, y)cZ(t, y, x)

)
, (28)

and

cZ(t, y, y′) dt ≡ Cov [dtZ(t, y), dtZ(t, y′)] . (29)

We stress that, by construction, the form (27) with (28)
and (29) automatically satisfies the condition (24).

In order to get the form of the allowed SPDE’s for
f(t, x), we recall the requirements that are convenient to
impose Z, without loss of generality.

1. Z(t, x) is continuous in x at all times t;
2. Z(t, x) is continuous in t for all x;
3. Z(t, x) is a martingale in time t, E [dtZ(t, x)] = 0, for

all x;
4. The variance of the increments, Var [dtZ(t, x)], does

not depend on t or x;
5. The correlation of the increments,

Corr [dtZ(t, x), dtZ(t, x′)], does not depend on t.

Then, a fairly general stochastic function Z(t, x) obey-
ing these requirements is such that [12]

dtZ(t, x) = dt
1√
j(x)

∫ j(x)

0

dy η(t, y), (30)
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where η(t, x) is a Gaussian white noise characterized by
the covariance (9). This leads to the following covariance
function for Z(t, x) :

cZ(t, y, y′) =

√
j(x)

j(x′)
for j(x) < j(x′), (31)

and the roles of x and x′ in (31) are reversed if j(x) >
j(x′).

Inserting (30) in (27), we get

∂f(t, x)

∂t
−
∂f(t, x)

∂x
= σ(t, x)

(∫ x

0

dy σ(t, y)

√
j(y)

j(x)

)
+
σ(t, x)√
j(x)

∫ j(x)

0

dy η(t, y). (32)

Multiplying both sides of this equation by

√
j(x)

σ(t,x) and tak-

ing the partial derivative with respect to x finally yields

∂

∂x

[√
j(x)

σ(t, x)

(
∂f(t, x)

∂t
−
∂f(t, x)

∂x

)]
=

∂

∂x

[√
j(x)

∫ x

0

dy σ(t, y)

√
j(y)

j(x)

]
+

√
|
dj(x)

dx
| η(t, x),

(33)

where we have used that η(t, j(x)) = η(t, x)/
√
|dj(x)/dx|.

This provides a first class of SPDE, which is in general
non-linear since the volatility σ(t, x) can be an arbitrary
function of f(t, x).

An even more general class of SPDE’s for f(t, x) is
obtained by using the most general stochastic function
Z(t, x) obeying the requirements 1− 5 [12]:

dtZ(t, x) = dt
1√
l(x)

∫ j(x)

0

dy

√
d

dy
l ([j]−1) (y) η(t, y).

(34)
The correlation of the increments is

cZ(t, x, x′) =

√
l(x)

l(x′)
, if j(x) < j(x′). (35)

The role of x and x′ in (35) are inverted if j(x) > j(x′).
This provides a generalization to (30) since a different
function appears in the correlation function and in the
inequality condition on x and x′.

Inserting (34) in (27), we get

∂f(t, x)

∂t
−
∂f(t, x)

∂x
= σ(t, x)

×

(∫ x

0

dy σ(t, y)

√
l(y)

l(x)

)
+
σ(t, x)√
l(x)

×

∫ j(x)

0

dy

√
d

dy
l

(
[j]−1

)
(y) η(t, y)

)
. (36)

Multiplying both sides of this equation by

√
l(x)

σ(t,x) and tak-

ing the partial derivative with respect to x finally yields

∂

∂x

[√
l(x)

σ(t, x)

(
∂f(t, x)

∂t
−
∂f(t, x)

∂x

)]
=

∂

∂x

[√
j(x)

∫ x

0

dy σ(t, y)

√
l(y)

l(x)

]
+

√
dl(x)

dx

√
|
dj(x)

dx
| η(t, x). (37)

This provides the most general class of SPDE describing
the dynamical evolution of the forward rates f(t, x) due to
the interplay of a stochastic forcing η and non-linearities
embodied in σ(t, x).

According to the classification briefly summarized
above, these equations (33) and (37) are both of the hy-
perbolic class. It is noteworthy that the no-arbitrage con-
dition excludes the parabolic class. In contrast, physical
strings obey hyperbolic equations for zero or small dissi-
pation and parabolic equations in the over-damped limit.
A posteriori, it is not surprising that we find that the no-
arbitrage condition, which implies the absence of market
friction, corresponds to the first class. Notice that the term
∂f(t,x)
∂t
− ∂f(t,x)

∂x
can be replaced by ∂f(t,x)

∂t
when changing

the variables (t, x) to (t, s = t + x) and the l.h.s. of (37)

become of the form ∂
∂s

[√
l(s)

σ(t,s)
∂f̂(t,s)
∂t

]
.

These equations (33) and (37) are characterized by
partial derivatives and two source terms in the r.h.s., the
first one being locally adapted and the second one corre-
sponding to the influence of external noise. These equa-
tions can be explicitely solved if σ is specified and is in-
dependent of f(t, x), thus keeping the equations linear,
as done in reference [12]. The problem of finding a solu-
tion of these equations when σ(t, x) depends on f(t, x) is
much more complex and belongs to the vast class of gen-
erally unsolved non-linear partial differential equations.
Such equations have been encountered in many different
areas, in particular some apparently particularly simple
nonlinear PDE’s have been found to exhibit the most
complex phenomenology one can imagine. A vivid exam-
ple is the Navier-Stokes equation of fluid motion leading
to fluid turbulence when its single parameter (viscosity)
goes to zero [22]. Extrapolating on these superficial analo-
gies, we conjecture that it might be possible to postulate
a simple form for the nonlinear dependence of σ as a func-
tion of f(t, x), such that one or two real parameters might
embody the full phenomenology of observed forward rate
statistics.

6 A parametric example

Empirical observation shows that correlation between two
forward rates, with maturities separated by a given in-
terval, increases with maturity. We have shown previ-
ously [12] that the parameterization j(x) = ei(x) leads to
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the simple and general condition that i(x) must be a
function which increases more slowly than x, i.e. i(x)
must be concave (downward). In order words, j(x) must
grow slower than an exponential. Any expression like
j(x) = exp(κxα) with an exponent 0 < α < 1 qualifies.
This corresponds to

cZ(t, x, y) = e−κ|x
α−yα|. (38)

Reporting this choice in (33) yields the following
SPDE :

∂

∂x

[
e(κ/2)xα

σ(t, x)

(
∂f(t, x)

∂t
−
∂f(t, x)

∂x

)]
=

∂

∂x

[∫ x

0

dy σ(t, y)e(κ/2)yα
]
+
√
καx

α−1
2 e(κ/2)xα η(t, x).

(39)

7 Reduction to N-factors models

Let us now show how our model naturally encompasses the
usual HJM formulation of forward interest rates in terms
of N factors. The idea is that N factors models can be
obtained as truncations at the order N in a way similar to
a galerkin approximation, corresponding to a finite “reso-
lution”, of an infinite expansion over the eigenfunctions of
the operator defining the partial differential equation. This
point of view allows one to clearly see both the relation-
ship with previous formulations and their limitations. It
also gives a justification to N factor models in the follow-
ing sense. As the stochastic string description constitutes
the most general description of the forward rate curve,
the fact that the N factors models emerge naturally by a
truncation of this general formulation, amounting to limit
the resolution of the fluctuations in the time of maturity
axis, justifies their mathematical status as simply a degree
of approximation of an ideal general description.

To keep the exposition as general as possible, let us
call L the linear operator defined by

Lf(t, x) = η(t, x). (40)

We simplify the problem by restricting our analysis to lin-
ear SPDE’s. This allows us to use the general property of
linear operators that the Green function G(t, x|v, y) de-
fined by

LG(t, x|v, y) = δ(t− v) δ(x− y) (41)

can be expressed as [20]

G(t, x|v, y) =
∞∑
n=1

ln(v, t) ψn(x) φn(y). (42)

The ψn(x) are the eigenfunctions of L. The φn(x) are the
eigenfunctions of the adjoint operator L∗, which is the
same as L for the hyperbolic string wave equations consid-
ered above (self-adjoint case) (but would not be the same
for a parabolic string equation). The ln(v, t) are a set of

functions which depend on L. Now, the eigenfunctions of
L form an orthogonal basis on which one can expand the
source term η(t, x) :

η(t, x) =
∞∑
j=1

ηj(t) ψj(x). (43)

The delta-covariance property of η(t, x) allows us to
choose that of the ηj(t) as follows :

Cov[ηj(t), ηk(t′)] = gjk(t) δ(t− t′), (44)

where gjk(t) depends on the form of the operator. Using
the general solution of (40) which reads

f(t, x) = f(0, x)+

∫ t

0

dv

∫ ∞
−∞

dy G(t, x|v, y) η(v, y), (45)

we obtain

f(x, t) =∫ t

0

dv

∫ ∞
−∞

dy

∞∑
n=1

ln(v, t) ψn(x) φn(y)
∞∑
j=1

ηj(v) ψj(y).

(46)

By the orthogonality condition
∫∞
−∞ dyφn(y) ψj(y) = δnj ,

we obtain

f(x, t) =

∫ t

0

dv

∞∑
n=1

ln(v, t) ψn(x)ηn(v). (47)

We recognize a N -factor model by truncating this sum at
n = N and with the identification√

gnn(t) ln(v, t) ψn(x) ≡ σn(t, x), (48)

and
ηn(t)dt√
gnn(t)

≡ dtWn(t). (49)

Since the functions ψn(x) are more and more complicated
or convoluted as the order n increases, the truncation at a
finite order N indeed corresponds to a finite resolution in
the driving of the forward rate curve. For instance, ψ1(x)
can be a constant, ψ2(x) can be a parabola with a single
maximum, ψ3(x) can be a quartic (two up maxima and
one down maximum), etc.

8 Option pricing and replication

In this section, we derive the general equation for the pric-
ing and hedging of interest rate derivatives. Our deriva-
tion is restricted to linear SPDE’s, i.e. to the cases where
σ(t, x) is not an explicit function of the forward rates f .
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8.1 The general case

In general, European term structure derivatives in our
model have a payoff function of the form

C(t, {P (s)}, r(t)), (50)

where the argument {P (s)} indicates that the payoff de-
pends on the price at time s of all bonds of different time
of maturities, i.e. on the full forward rate curve13. The
problem we address is that of hedging this claim by trad-
ing bonds. Hedging these claims in general implies trading
in an infinity of bonds, so that the claim’s price at time t
will be a function of the entire forward rate curve.

There is thus in general no hope of being able to per-
fectly hedge interest rate contingent claims with a finite
number of bonds. We therefore extend the space of admis-
sible trading strategies to include density valued portfo-
lios.

We denote by h(t, s) the density (number) of bonds
held in the portfolio at time t, with maturity s, and let
g(t) be the amount invested in the bank account. Then,
the value of an investment strategy is

V (t) = g(t)B(t) +

∫ ∞
t

h(t, u)P (t, u)du.

Let us call V1 the value of the portfolio made of the
contingent claim, with value process C, financed at the
risk-free rate r(t), and V2 that of the replicating portfo-
lio consisting of bonds and of money invested in the bank
account at the risk-free interest rate r(t) (equal to the
the spot rate f(t, 0) which may fluctuate but is risk-less
in the sense that it gives the instantaneous payoff of cash
invested in the bank account). At time 0 ≤ t ≤ T , the vari-
ation of V1 with time, discounted by the risk-free interest
rate, is

dtV1(t) = dtC(t)− r(t)C(t)dt. (51)

The variation of V2 discounted by the risk-free interest
rate is

dtV2(t) =

∫ ∞
t

du h(t, u)[dtP (t, u)− r(t)P (t, u)dt]. (52)

There are no other terms in (52) as a sale or purchase of
bonds and deposit or withdrawal on the bank account cor-
respond only to a change of the nature of the investment
but not to a change of wealth. The maturity of a bond
is not a change of wealth either. Only the variations of
the bond prices have to be taken into account. Note that
the term dtB(t)−r(t)B(t)dt vanishes identically from the
definition of the spot rate and thus the amount invested
in the bank account does not contribute to the discounted
variation of V2. The standard replication argument [23] for
option pricing and hedging amounts to equate the varia-
tions in values of the two portfolios. We need some more

13 Expressing the payoff as a function of the full forward curve
is the same as expressing it as a function of the corresponding
continuous set of bonds.

ingredients before carrying out this program (see the ap-
pendix for a pedagogical exposition of this formulation
for the standard European call option problem). See ref-
erence [24] for a different approach in the non-Gaussian
case.

We assume that bond prices are driven by one of the
stochastic string processes Z(t, x) introduced in [12] and
used above. C(t) is a priori a function of a continuous in-
finity of bond prices at time t. The relevant mathematical
tool to calculate dtC is that of functional derivation. We
have, up to order dt,

dtC =
∂C

∂t
dt+

∫ ∞
t

du
∂C

∂P (t, u)
dtP (t, u)

+
1

2

∫ ∞
t

du

∫ ∞
t

dv
∂2C

∂P (t, u)∂P (t, v)

×Cov [dtP (t, u), dtP (t, v)]

+
∂C

∂r
dtr +

1

2

∂2C

∂r2
Var[dtr] (53)

+
1

2

∫ ∞
t

du
∂2C

∂r∂P (t, u)
Cov [dtP (t, u), dtr(t)] .

In (53), we have taken into account that the option price C
is also a function of the stochastic spot rate r(t). dtP (t, s)
is given by [12]

dtP (t, s) = dt P (t, s)

[
f(t, 0)

−P (t, s)

∫ s−t

0

dy σ(t, y) dtZ(t, y)

]
. (54)

This expression can be derived directly from (16), (27)
and Ito’s calculus. Thus

Cov [dtP (t, u), dtP (t, v)] = P (t, u) P (t, v)∫ u−t

0

dy σ(t, y)

∫ v−t

0

dy′ σ(t, y′)

×Cov [dtZ(t, y), dtZ(t, y′)] . (55)

We also have

Var[dtr] = [σ(t, 0)]2Var[dtZ(t, 0)], (56)

and

Cov [dtP (t, s), dtr(t)] = −σ(t, 0) P (t, s)

∫ s−t

0

dy σ(t, y)

×Cov [dtZ(t, y), dtZ(t, 0)] . (57)

The portfolio of bonds replicates the option if dV1(t) =
dV2(t). We already see that a necessary condition for the
replication to be perfect (the market to be complete) is
that the replicating portfolio is made of a continuous in-
finity of bonds. Technically, this comes from the fact that
the time differential of the option price C leads, by the
functional differential, to a continuous integral over all
bonds with time-to-maturity larger than t when the pay-
off is indeed dependent on the continuous infinity of bond
maturities.
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The stochastic part proportional to dtP (t, u) in the
replicating equation dV1(t) = dV2(t) cancels out if we
choose

h(t, u) =
∂C(t)

∂P (t, u)
, (58)

which is the usual delta hedging. But this is not enough
as the stochastic term proportional to dtr still remains.
From the fact that r(t) ≡ f(t, 0) and by definition

P (t, s) = exp{−

∫ s−t

0

dy f(t, y)}, (59)

we see that bonds close to maturity are driven by the same
stochastic innovations as the spot rate. To make sense of
this statement, one has to be careful on how the limit
s → t is taken. The standard way to tackle this problem
is to remember that the continuous formulation is nothing
but a limit δt → 0 of discrete time increments. We thus
have, instead of (59),

P (t, s) = exp{−δt [f(t, 0) + f(t, δt)

+f(t, 2δt) + ...+ f(t, (n− 1)δt)]}, (60)

where n = (s− t)/δt. In particular,

P (t, t+ δt) = exp{−δt f(t, 0)} = 1− δt f(t, 0), (61)

where the second equality becomes asymptotically exact
for very small δt. This shows that it is possible in principle
to hedge the spot rate by bonds that are very close to
maturing. From (61), we obtain

dtP (t, t+ δt) = −δt dtf(t, 0) = −δt dtr(t). (62)

From this, we see that the stochastic part proportional to
dtr(t) in the replicating equation dV1(t) = dV2(t) cancels
out if we add the quantity of bonds

δh(t, t+ δt) = −
1

δt

∂C(t)

∂r(t)
, (63)

to the previous quantity h(t, t+ δt) = ∂C(t)
∂P (t,t+δt) obtained

from (58) for the bonds going to maturity. Notice that the
two quantities are equal since one can replace −δt∂r(t) by
∂P (t, t+ δt) as seen from (62).

To summarize, the hedging strategy is given by

h(t, u) = [2− Y (u− δt)]
∂C(t)

∂P (t, u)
, (64)

where Y (x) is the Heaviside function equal to 1 for x ≥ 1
and zero otherwise. Thus, we recover the usual delta hedg-
ing, except for the factor 2 for bonds close to maturation
which results from the existence of a stochastic spot in-
terest rate.

The deterministic equation of the option price is then

1

2

∫ ∞
t

du

∫ ∞
t

dv A(t, u, v)
∂2C(t)

∂P (t, u)∂P (t, v)
P (t, u) P (t, v)

+
1

2

∫ ∞
t

du
∂2C

∂r∂P (t, u)
Cov [dtP (t, u), dtr(t)]

+
Var[dtr]

2

∂2C

∂r2
+
∂C(t)

∂t
− r(t)C(t)

+ r(t)

∫ ∞
t

du [2− Y (u− δt)]
∂C(t)

∂P (t, u)
P (t, u) = 0 (65)

where

A(t, u, v) ≡

∫ u−t

0

dy σ(t, y)∫ v−t

0

dy′ σ(t, y′)cZ(t, y, y′). (66)

This equation is correct only when σ(t, x) is not an ex-
plicit function of the forward rates f , a case correspond-
ing to linear SPDE’s (37). When this is not the case, i.e.
when σ(t, x) is a function of f , we see from (65) with (66)
that C should also be a function of f , in addition to be
dependent on t, {P (s)} and r(t). As a consequence, the
total time derivative dtC must contains terms involving
partial derivatives with respect to f that must be treated
self-consistently with the other terms in (54).

8.2 Bond derivatives

The general case simplifies greatly when the contingent
claim has a payoff that can be written as a function of a
single bond price. We see that pricing and hedging these
derivatives is much easier. This is very interesting since
most derivatives that are actually traded have payoffs that
can be written as a function of a finite number of bond
prices.

The simplest case of a bond option is a European call
or put on a zero-coupon bond. Consider a call with ma-
turity s on a bond with maturity s+ τ , with strike price
K. The payoff at maturity is the amount

C(s, P (s, s+ τ)) = max(P (s, s+ τ) −K, 0), (67)

The price of this claim at time t < s will only be a function
of P (t, s + τ), and the derivative can be hedged with a
position in this bond alone.

In the same manner, caps14, floors15, collars16 and
swaptions17 have payoffs that, in general, can be written

14 A cap guarantees a maximum interest rate for borrowing
over a determined time horizon.
15 A floor guarantees a minimum interest rate for an invest-
ment over a determined time horizon.
16 A collar is a contract in which the buyer is guaranteed an
interval of interest rates, with a maximum rate. Its sale is thus
the association of the buy of a cap and the sell of a floor.
17 A swaption is an option on a swap. Simply put, an interest
rate swap is a contract between two parties that exchange for
a determined time two interest rates, for instance a short-term
and a long-term.
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as a function of the prices of a finite set of bonds. The
simplest representative example of this type of options is
a caplet. A caplet (settled in arrears) pays at maturity, the
maximum of the LIBOR (London Interbank Offered Rate)
for the caplet period (set at the beginning of the period)
minus the cap rate and zero, multiplied by the principal
amount. Let the current time be t, the beginning of the
caplet period be s and the length of the caplet period be
τ . Denote the principal amount by V , let the LIBOR be
L(s, s + τ), and the cap rate be K. Then, the payoff at
date s+ τ will be

C(s+ τ) = V τ max(L−K, 0),

that we can express in our notation as

C(s+ τ) = V max
(
e
∫ τ
0
f(s,y)dy − 1−Kτ, 0

)
= V max

(
1

P (s, s+ τ)
− 1−Kτ, 0

)
.

Finally, this payoff is known at time s, so we can write it
as

C(s) = V max (1− (1 +Kτ)P (s, s+ τ), 0)

Again, the payoff only depends on the price of a single
bond, so that the claim can be priced and hedged with
that bond.

If the time t value of the contingent claim depends only
on t and P (t, s), the replicating portfolio can have only the
bond P (t, s). Then, the previous calculation simplifies as
all functional derivations transform into the usual deriva-
tion and we get, instead of (65):

1

2
A(t, s)[P (t, s)]2

∂2C

∂[P (t, s)]2

+
1

2

∂2C

∂r(t)∂P (t, s)
Cov [dtP (t, s), dtr(t)]

+
Var[dtr]

2

∂2C

∂r2

+ r(t)P (t, s)
∂C

∂P (t, s)

+ r(t)P (t, t + δt)
∂C

∂P (t, t+ δt)

+
∂C

∂t
− r(t)C = 0 (68)

where

A(t, s) =

∫ s−t

0

dy σ(t, y)

∫ s−t

0

dy′ σ(t, y′) cZ(t, y, y′).

(69)
The equation (68) is similar to the usual Black-Scholes
equation but has two differences. First it has a time-
dependent diffusion coefficient A(t, x). But more impor-
tantly, it shows that the option price is function of two
bond prices, the bond underlying the writing of the op-
tion and the bond just before maturation. We see that
the expression (68) has a priori no mathematical sense in

the continuous limit but takes full sense when we replace
all derivatives by their discrete differences. This is a novel
situation brought about by the structure of our model de-
fined in terms of correlated but different shocks for each
maturities as seen from equation (27). In fact, the contin-
uous limit can be retrieved by remarking that ∂C

∂P (t,t+δt)

should be of order δt :

∂C

∂P (t, t+ δt)
= δt w(t, P (t, s)). (70)

Then, the term r(t)P (t, t + δt) ∂C
∂P (t,t+δt) in (68) becomes

−r(t) w(t, P (t, s)) P (t, t+δt) ∂C
∂r(t) . This situation is simi-

lar to a boundary layer for singular perturbation problems
and in hydrodynamics where a special treatment has to be
developed close to a boundary, here the spot maturity.

This equation contrasts with the pricing PDE that
is usually presented in term structure models. In models
with state variables such as CIR, the objective is to price
derivatives as a function of those state variables and time,
and so the PDE is set with respect to them. The solution
of the PDE we present is not a function of state variables,
which do not exist in our model, but rather is a function
of the price of the bond underlying the derivative.

It is interesting to compare this pricing equation (68)
with (69) to the corresponding pricing equation for the
standard HJM model with a single Brownian motion driv-
ing the full forward rate curve. In this case, we have

dtP (t, s) = P (t, s)

{[
φ(t)

∫ s−t

0

σ(t, y) dy

]
dt

+ dW (t)

∫ s−t

0

dy σ(t, y)

}
, (71)

where φ(t) is the market price of risk [15].
Thus

Var [dtP (t, s)] = dt [P (t, s)]2
(∫ s−t

0

σ(t, y) dy

)2

. (72)

Using the same method as above, except for the term
r(t)P (t, t+ δt) ∂C

∂P (t,t+δt) which is absent, we get the same

pricing equation (68) with the instantaneous “diffusion
coefficient”

A(t, s) =

(∫ s−t

0

σ(t, y) dy

)2

, (73)

instead of (69). The expression (69) reduces to (73) for
cZ = 1 as it should, i.e. for perfect correlations along
the time-to-maturity axis, which corresponds to a single
Brownian process (single factor) driving the whole forward
rate curve.

9 Conclusion

All previous models of interest rates envision the fluctua-
tions of the forward rate curve as driven by one or several
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(multi-factors) “zero-dimensional” random walk processes
acting either on the left-end-point of the string, the short-
rate, or on the whole function f(t, x) simultaneously. To
sum up the situation pictorially, in the first class of mod-
els, the forward rate curve is like a whip held by a shak-
ing hand (the central banks!?), while in the second class,
imagine a large hammer of the size of the full curve hitting
it simultaneously through an irregular pillow (the volatil-
ity curve) transmitting inhomogeneously the impact along
the curve.

The present paper, which extends reference [12], ex-
plores the more general situation where all the points of
the forward curve are simultaneously driven by random
shocks. Pictorially, this is like a string submitted to the
incessant impacts of rain drops. We have argued that the
condition of absence of arbitrage opportunity provides a
constructive principle for the establishment of a general
theory of interest rate dynamics. We have derived the gen-
eral condition (25) that a stochastic partial differential
equation (SPDE) for the forward rate must obey. Using
our previous parameterization in terms of string shocks
[12], we have derived the general structure (37) of the
SPDE for forward rates under the no-arbitrage condition.
It is noteworthy that the no-arbitrage condition excludes
the parabolic class of partial differential equations, i.e.
those that usually describe the physical strings submitted
to strong fluctuations!

In a second part, we have derived a general approach
to price and hedge options defined on bonds and thus on
the forward rate curve, in terms of functional partial dif-
ferential equations. We have found that the usual Black-
Scholes replication strategy can be adapted to this situ-
ation, provided that special terms be added to account
self-consistently for the instantaneous interest rate. Our
approach is limited to the case where the volatility σ(t, x)
does not depend on f(t, x) itself, thus excluding the a pri-
ori most interesting class of stochastic non-linear partial
differential equations.

Let us end with a conjecture. It may be conceivable
that a simple form for the nonlinear dependence of σ as a
function of f(t, x), with one or two real parameters, might
embody the full phenomenology of observed forward rate
statistics, hence constituting a truly fundamental theory
of forward rate curves. It would be fundamental in the
sense that the properties of the shocks would be gener-
ated dynamically by the nonlinear interactions similarly
for instance to the coherent vortices in turbulence for in-
stance, and in contrast to the usual external shock assign-
ments in the existing linear models. The complex behav-
ior would then result from the interplay between external
factors represented by the noise source and the non-linear
dynamics. Persuing along this conjectural tone, this ap-
proach might provide an line of attack for understanding
the recent empirical finding [25] of a causal information
cascade across scales in volatilities, occurring from large
time scales to short times scales in a way very similar to
the celebrated Kolmogorov energy cascade proposed for
fluid turbulence.

I am very grateful to M. Brennan and especially P. Santa-Clara
for helpful discussions and to D. Stauffer for a careful reading
of the manuscript.

Appendix

The simplest option pricing problem (the so called ‘Euro-
pean call options’) is the following : suppose that an opera-
tor wants to buy from a bank a given share, a certain time
t = T from now (t = 0), at a fixed ‘striking’ price xc. If the
share value at t = T , x(T ), exceeds xc, the operator ‘exer-
cises’ his option. His gain, when reselling immediately at
the current price x(T ), is thus the difference x(T )−xc. On
the contrary, if x(T ) < xc the operator does not buy the
share. What is the price C of this option, and what trading
strategy φ should be followed by the bank between now
and T , depending on what the share value x(t) actually
does between t = 0 and t = T ?

In the standard treatment in continuous time [23], one
forms the portfolio F = −C + xφ such that dtF remains
indentically zero. Here, we propose a slightly different
derivation of Black-Scholes’ result based on the idea that
the bank constructs a portfolio that replicates the option
exactly, thereby eliminating all risks. This is of course only
valid under the restricted assumptions of continuous trad-
ing, Gaussian random walk of market prices, and absence
of market imperfections and transaction costs.

The idea is to compare the two points of view of the
option buyer and of the option seller. During the time
increment dt, their respective change of wealth discounted
by the risk-free interest rate r is

dWa = dC − rCdt, (74)

for the buyer who owns only the option and

dWv = φ[dx− rxdt], (75)

for the seller who possesses a portfolio made of φ underly-
ing stock shares. dC − rCdt is the gain or loss of the buyer
above the risk-free return. φ[dx− rxdt] is the gain or loss
of the seller for a price variation of the stock above the
risk-free return. The fair price of the option and the hedg-
ing strategy that the seller must follow are those such that
the return is the same for both traders, namely

dWa = dWv. (76)

This equality makes concrete the fundamental idea of
Black and Scholes that the fair price and the hedging
strategy are univoquely determined for all traders, inde-
pendently of their risk aversion, if the seller can replicate
the option.

Using Ito’s formula to calculate dC, we have:

dC =
∂C(x, xc, T − t)

∂t
dt+

∂C(x, xc, T − t)

∂x
dx

+
D

2

∂2C(x, xc, T − t)

∂x2
dt. (77)
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Inserting this expression in (76) shows immediately that,
if one makes the choice

φ = φ∗ ≡
∂C(x, xc, T − t)

∂x
, (78)

then the only stochastic term, namely dx, cancels out! The
comparison between the two returns of the buyer and seller
become certain. In this case, the equation (76) provides
the following deterministic partial differential equation for
C:

∂C(x, xc, T − t)

∂t
+ rx

∂C(x, xc, T − t)

∂x

+
D

2

∂2C(x, xc, T − t)

∂x2
− rC(x, xc, T − t) = 0, (79)

with boundary conditions the value of the option at ma-
turity C(x, xc, 0) ≡ max(x − xc, 0). The solution of this
equation is the celebrated Black and Scholes formula [10].
The hedging strategy is then the derivative of this solution
with respect to x. This derivation shows very straightfor-
wardly why the average return of the underlying stock
does not appear ; it has been avoided by the replication
condition (76) with (78).
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